
z 
1- 

*o 
00 cv 
w 
n 

N A T I O N A L  AERONAUTICS A N D  SPACE A D M I N I S T R A T I O N  W A S H I N G T O N ,  D. C. JULY 1976 



TECH LIBRARY KAFB, NM 

.. 
).-!Security Closri f .  (of th is  report) 

Unclassified 

- 
I .  Report No. 2. Government Accession No. 

NASA TN D-8286 1 
On Estimating Gravity Anomalies 
from Gradiometer Data 

P. Argentiero and R. Garza-Robles 

Goddard Space Flight Center 
Greenbelt, Maryland 2077 1 

t i t l e  and Subtitle 

7. Author(s) 

9. Performing Organization Name ond Address 

20. Security C los r i f  

Unclassified 

2. Sponsoring Agency Name and Address 

National Aeronautics and Space Administration 
Washington, D.C. 20546 

5. Supplementary Notes 

- _  0234082 
3. Rectpienr 5 corolog NO. 

5. Report Date 

6. Pelforming Orgonization Code 
July 1976 

932 
8. Performing Orgonirotion 

G-7684 

68 1-02-0 1-03 
IO. Work Uni t  No. 

11. Contract or Grant No. 

13. Type of Report and Period Covered 

Technical Note 
~~ 

14. Sponsoring Agency Code 

- .. 

.. 
6. Abstract 

The Gravsat-gradiometer mission involves flying a gradiometer on a gravity satellite 
(Gravsat) which is in a low, polar, and circular orbit. This document presents the results 
of a numerical simulation of the mission which demonstrates that ,  if the satellite is in a 
250-km orbit, 3- and 5degree gravity anomalies may be estimated with accuracies of 
0.03 and 0.01 mm/s’ (3 and 1 mgal), respectively. At an altitude of 350 km, the results 
are 0.07 and 0.025 mm/s’ (7 and 2.5 mgal), respectively. These results assume a rotating 
type gradiometer with a 0.1 etvos unit accuracy (1 etvos unit = 1 0-9 gallcm). The 
results can readily be scaled to  reflect another accuracy level. 

-. - 
18. Distr ibution Statement 

Unclassified -Unlimi ted 
C a t .  46 

of  th is  page) 21. No. of Pages 22. Price- 1 -17 1 $3.25 ~_ 
For sale by the National Technical Information Service, Springfield, Virginia 22161 



This document makes use of international metric units according to the 
Systeme International d’Unites (SI). In certain cases, utility requires the 
retention of other systems of units in addition to the SI units. The conven- 
tional units stated in parentheses following the computed SI equivalents are 
the basis of the measurements and calculations reported. 



CONTENTS 

ABSTRACT . . 

INTRODUCTION 

RESULTS . . .  

CONCLUDING REMARKS 

REFERENCES . . . . .  
, ,  . ~. . 

. . .  

. . .  

. . . .  

. . . .  

Page 

. . . .  i 

. . . .  1 

9 

16 

17 

. . . . . . . . . . . . . .  

. . . . . . . . . . . . . .  

. . . . . . . . . . . . . .  

... 
111 



ON ESTIMATING GRAVITY ANOMALIES 
FROM GRADIOMETER DATA 

P. Argentiero 
R. Garza-Robles 

Goddard Space Flight Center 

INTRODUCTION 

The Gravsat-gradiometer mission as described in Reference 1 involves flying a gradiometer 
on a gravity satellite (Gravsat) which is in a low, polar, and circular orbit. The low-frequency 
terms of the geopotential field are observable from satellite perturbations as viewed by a 
high satellite or satellites. If the low-satellite orbit has an altitude of 300 kin, a global dis- 
tribution of satellite-to-satellite tracking data can be obtained in about 10 days. From such 
a data set, an accurate and well-conditioned determination of the low-order terms of a 
spherical harmonic expansion of the geopotential field should be obtainable (Reference 2).* 
Because it measures second derivatives of the geopotential field, the gradiometer will be sen- 
sitive to  the density variations of the Earth’s outer crust, which are the source of the high- 
frequency components of the geopotential field. These high-frequency terms tend to  be 
smoothed out  in satellite perturbation data, and, in this sense, the gradiometer as a data type 
complements rather than competes with satellite-to-satellite tracking data. 

The difficulty in using standardestimation techniques to  determine global geopotential fine 
structure is that a large number of parameters must be estimated. For instance, if features 
of the geopotential as small as 3 degrees are to  be recovered and if the standard spherical 
harmonic expansion of the geopotential field is used as a parameterization, a full set of co- 
efficients t o  degree and order 60 is required. This implies the estimation of over 3700 para- 
meters. In general, simultaneous estimation of such large parameter sets is not possible. In 
practice, use of standard estimation techniques to  recover geopotential fine structure from 
gradiometer data requires the adjustment of small subsets of parameters and constraining 
other parameters t o  a priori values. But, unless the parameterization exhibits a certain ortho- 
gonality property in the data set, the uncertainities in the unadjusted terms will badly corrupt 
the estimates of the adjusted terms. If spherical harmonic coefficients are used, the estima- 
tion problem can be decomposed into estimation problems of smaller dimensionality only 
if the gradiometer data set is globally distributed. This implies a heavy computational load. 
A parameterization of the geopotential field is desired in which the individual parameters 
exhibit a localized observability pattern in gradiometer data. With such a parameterization, 

*D. Koch and P. Argentiero, Simdation of the GravsatlGeopause Mission, NASA TM X-70776. Submitted for presentation 
at the American Geophysical Union Fall Annual Meeting, December 12-17,1974, San Francisco, California. 



i t  would be possible to accurately estimate small subsets of parameters by processing localized 
blocks of gradiometer data. The mean free-air gravity anomaly-Stokes’ function parameter- 
ization of geopotential fine structure (Reference 3) possesses a measure of orthogonality 
in local blocks of altimeter data (Reference 4). Reference 5 demonstrated the observability 
of gravity anomalies in gradiometer data, but the orthogonality property was assumed rather 
than demonstrated. Realistically, the orthogonality is not perfect and only the estimates of 
gravity anomalies which are a sufficient distance from unadjusted gravity anomalies will be 
of value. This implies that gravity anomalies should be estimated in blocks with the esti- 
mates of anomalies in a sufficiently small inner core accepted as valid and the rest should 
be rejected because of aliasing. To obtain an intelligent estimation strategy for determining 
gravity anomalies from gradiometer data, it is necessary to determine for a given data-block 
size the relationship between the accuracy with which a given anomaly is estimated and its 
distance from the nearest unadjusted anomaly. 

In this document, Gravsat-gradiometer missions a t  altitudes of 250 and 350 km are simu- 
lated, and optimal data-block and estimationblock sizes for determining 3- and 5-degree 
gravity anomalies are obtained by covariance analysis. A rotating-type gradiometer as 
described in Reference 6 is assumed to be mounted on the Gravsat and to have an accuracy 
of 0.1 etvos unit. However, the results can be readily scaled to reflect some other accuracy 
level. 

The rotating gradiometer is an instrument which senses gravity gradients in a given plane. 
If the instrument is onboard a satellite, that plane is assumed to  be the orbital plane of the 
satellite. A local satellite-centered coordinate system (I, , I , ,  I,) is defined where the I, 
unit vector is pointing northward, the I, unit vector is pointing eastward, and the I, unit 
vector is perpendicular t o  the plane spanned by I, and I, and is directed outward from the 
earth. If the satellite on which the rotating gradiometer is mounted is in a polar orbit, the 
sensing plane of the instrument always coincides with the plane spanned by the I, and I, 
unit vectors. This assumption simplifies the following mathematical development. The 
geopotential field can be represented as 

where U is a reference geopotential generally defined by a low degree and order spherical 
harmonic expansion of a nominal field and T is the so-called anomalous potential. The 
anomalous potential represents the high-frequency part of the field, and the primary 
interest is the portion of the gradiometer output which is attributable to  T. Assuming 
that the satellite is in a polar orbit and neglecting off-diagonal elements of the gravity- 
gradient tensor which are several orders of niagni tude smaller than the diagonal elements 
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(Reference 5)’ the additive component of the rotating gradiometer signal amplitude which 
is attributable to the anomalous potential T is 

where r, 4, and h have the usual spherical coordinate interpretations and the derivatives 
are evaluated at  the satellite position (Reference 5). 

The anomalous potential T a t  any point above the surface of the earth can be expressed 
by the discrete form of Stokes’ formula as 

1 

where figgi (@;, hl) is a mean gravity anomaly over a block centered at  latitude 4; and longi- 
tude 
(4;) A@: Ah; represents the area of the block on which the i fh  gravity anomaly is defined 
and S (r ,  @, h ,  @;, Xi) is Stokes’ function given in Reference 3 by 

and referenced to a geoid defined by the nominal field U. The expression cos 

7 - 
1 + t cos ( I)) + D 

S(r, @, A. @’. A’) = t + 1 - 3 D - t cos ( $ )  

where 

D = ( 1  - 2 t cos ($1 + t 2 ) ”  

where R is the mean radius of the Earth. The functional relationship between the anoma- 
lous part of the gradiometer output and a globally distributed set of gravity anomalies is 
obtained from equations 2 and 3 as 
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Equation 5 shows that, if the discrete form of Stokes’ formula is valid, the gradiometer 
output is a linear function of a global distribution of gravity anomalies. Therefore, stan- 
dard parameter-estimation techniques should apply to  the problem of determining gravity 
anomalies from gradiometer data. To understand the application of these techniques, it 
is helpful t o  use matrix notation. Let 7 be a vector of the anomalous components of 
gradiometer readings. Assume that the iti component of y is the anomalous gradiometer 
reading obtained when position of the satellite is given in spherical coordinates as (Ti, qji, 

Xi). Let z b e  a vector of numerical values of a global set of gravity anomalies. The j t h  
component o f z i s  the numerical value of the gravity anomaly centered at  latitude @; and 
longitude Ai. The functional relationship between? and E i s  expressed as 

7 = AX ( 6 )  

where A is a matrix the number of whose rows is the number of observations and the 
number of whose columns is the number of gravity anomalies. The element in the i fh  row 
and j t h  column of A is 

Equation 7 provides a linear equation of condition and, in a standard minimum variance 
fashion E, could be estimated from observations o f y .  In order for equation 7 to  be correct 
(correct, that is, assuming that the approximations inherent in the discrete form of Stokes’ 
formula are valid), the gravity anomalies in the array ;must cover the globe. Computa- 
tional considerations make it necessary to  choose a region in which the number of gravity 
anomalies t o  be estimated does not exceed a few hundred. In effect, gravity anomalies 
outside of this region are assumed to be zero. To see precisely what happens when this 
assumption is made, postulate that the garray of equation 6 is to  be defined over the globe, 
and write 

where 
‘v 

gl 

g, 

= gravity anomalies to  be adjusted in a standard minimum-variance filter and 

= gravity anomalies assumed to be zero and therefore left unadjusted by the 
N 

minimum-variance filter 

Then equation 6 can be written 

4 



N 

where A, and A, are the variational matricies of y with respect to g, and g, , respectively. 

The gradiometer output provides direct observations y o f 7  with statistics 

(9 1 y = y+ v ,  E (v) = 6, E (v v’) = Q 

Estimates of mean free-air gravity anomalies obtained from satellite tracking and gravi- 
metry measurements are available (Reference 7). Unless this information was correctly 
factored into the gravity anomaly estimates obtained from gradiometer data, the resultant 
estimates would not be optimal. Consequently, the existence of an a priori estimate g’, or 
g, is assumed with statistics - 

- 
For computational reasons, the gravity anomalies g, are assumed to be zero, but the 
actual values of gravity anomalies in the region of the sphere which is ignored have a 
certain distribution about zero. Assume that 

‘v 

When the values of g, are assumed to  be zero, the minimum variance estimate ofzl  
be c o in e s 

Define the covariance matrix of the estimator given by equation 12 as 

From equations 9, 10, 1 1 ,  and 12, 

Equation 14 yields 

Assume that the data noise is uncorrelated and that each data point has the same variance. 
Then 
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where I is the identity matrix and a i  is the common variance of the data. On the assunp- 
tion that the values of the unadjusted gravity anomalies are independently distributed, the 
covariance matrix P, of can be written as 

0 

0 

where n2 is the number of unadjusted gravity anomalies and 02 is the second moment about 
zero of the i fh  unadjusted gravity anomaly. Also, define a matrix K as 

If i l l  is the number of adjusted parameters, then K is of dimension n1 by n 2 .  With these 
assumptions, equation 1 5 yields the following expression for the variance of the it’’ adjusted 
gravity a no in  a1y 

where 0:. 
elements of the matrix P;’ are relatively small) and 

is the i f ”  diagonal element of the matrix (AT A, 1.’ (assuming that diagonal 

P i . j  = K ( I .  j , ,  j >, 1 (20) 

Define the error sensitivity matrix as 

, i  = 1 , 2  ,._... n , , J  = 0 , 1 , 2  ,..... 1 1 ,  - 

And finally define the alias matrix as 

L = s a  

6 



where 

u 1  

0 
u2 

The alias matrix reveals much of the probability structure of the estimation procedure. 
From equations 19, 21,  22,  and 23 i t  can be seen that the standard deviation of the ith 
adjusted gravity anomaly is the root sum square (RSS) of the terms in the irTz row of the 
alias matrix. The elements in the first column of the alias matrix represent the RSS contri- 
bution t o  the standard deviation of each estimated parameter due to  the data noise. The 
elements in the j t k  column, j 2 2 represent the RSS contribution to the standard deviation 
of each estimated parameter attributable to  the j - 1" unadjusted parameter. These terms 
are called tlze aliasing contribtitioiis t o  the uncertainty in the adjusted parameters attribut- 
able t o  the uncertainty of the j - lS f  unadjusted parameter. Note that the aliasing contri- 
butions attributable t o  the j t T z  unadjusted parameter are proportional to the standard 
deviation of the j fh  parameter. 

DEFINITION 

In a given estimation process, the if* estimated parameter is 
said t o  be orthogonal with respect t o  the j'* unestimated 
parameter if the aliasing contribution to  the i f"  estimated 
parameter at t ri b u table to the 11 n ce r t ai n t y of the j ' ' I  un e s t i- 
mated parameter is zero. It will bc seen that the relation is 
symmetric in the sense that, i f  one parameter is ortliogonal 
with respect to another and if they are interchanged within 
the adjusted and unadjusted modes, they are again orthog- 
onal. 

To understand the implications of the orthogonality relationship, a more revealing repre- 
sentation of the aliasing terms is necessary. Note that the first term on the right side of 
equation 15 is the covariance matrix of the estimation process under the assumption that 
the unadjusted parameters are perfectly known. This covariance matrix gives the uncer- 
tainty of the estimates which are attributable to  the data noise only. Define the so-called 
"noise-only" covariance matrix as 

P = (A; Q-' A, t P i ' ) - '  (24) 
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Next, observe that the elements in the i f h  row and j th  column of A, and A,, respectively, 
are the partial derivatives of the it* data point with respect to the j rh  adjusted parameter 
and the partial derivatives of the ifh data point with respect to the j" unadjusted parameter. 
The aliasing contribution to  the ifh adjusted parameter attributable to the j th  unadjusted 
parameter can be written as 

where m is the number of data points. If the estimates of the adjusted parameters are 
relatively uncorrelated in the noiseanly covariance matrix, equation 25 can be approxi- 
mated by 

Eqiiation 26 shows that the aliasing contribution is symmetric in its arguments, and this 
implies the symmetry of the orthogonality relationship. 

A sufficient condition for the left side of equation 25 to  approximate zero is for the 
observability patterns of 
ures 1 and 2 demonstrate that the perturbation of a gradiometer observation caused by an 
0.01-mm/s2 ( 1-mgal)" perturbation of a gravity anomaly rapidly attenuates with increasing 
spherical radius. Therefore, if the grids on which 
separated, the orthogonality relationship will be effectively satisfied, and the estimate of 
would experience no aliasing from the uncertainty of g2 (j). Conversely, if the grid on 
which g, (I)  was defined was close to grids whose gravity anomalies were adjusted, serious 
aliasing of the resultant estimate would probably occur. 

Therefore, if the gravity anomalies are estimated in a block, the outer layers of the block 
contain gravity anomalies whose estimates will be badly aliased by the adjacent unadjusted 
parameters. It will be necessary to  discard these estimates. However, the gravity anomalies 
in a sufficiently small inner core of the block may be adequately separated from the unad- 
justed parameters to  be effectively orthogonal with respect to  them. The estimates of 
these terms will presumably be of sufficient accuracy to  be accepted. In effect, for every 
block of gravity anomalies to  be estimated, it will be necessary to  construct a "buffer 
zone" several layers deep of gravity anomalies whicli surround the block. The new and 

(I) and z2 u) in the data to  be virtually nonoverlapping. Fig- 

(I)  and g2 fi )  are defined are sufficiently 
(I) 

*Throughout the text of this document, the measurement unit of milligalileo (mgal) has been converted to a Standard Inter- 
2 2 national Unit of millimeters/sec (mm/s ). For convenience, the illustrations have not been converted. The simple con- 

version is 1 mgal = 0.01 mm/s . 2 

8 



d w 
I 

A L T I T U D E  (KM) 

---- 350 
250 

0" 1" 2" 3" 4" 5" 6' 7" 8" 9' 10" 

SPHERICAL DISTANCE 

I 

Figure 1 .  Gradiometer output perturbation attributable to 
0.01 -mm/s2 (1 -mgal) perturbation of 3degree gravity anomaly. 

t 

larger block of gravity anomalies must be simultaneously estimated and because of the 
estimates of gravity anomalies in the buffer zone must then be rejected aliasing. To design 
an intelligent data-processing procedure for the Gravsat-gradiometer mission, the relation- 
ship between the depth of the.buffer zone and the accuracy of the estimation procedure 
must be determined. This relationship will vary with grid size, data-block size, and satellite 
altitude. The most efficient way to  study the relationship is t o  use, covariance-analysis 
techniques to  generate alias matricies for several situations and to  attempt generalizations 
from the results. This method is explained in the next section. 

RESULTS 

Assuming that Gravsat altitude is approximately 300 km and that a gradiometer reading 
is obtained every 15 seconds, a dense, globally-distributed set of approximately 56000 
gradiometer measurements is obtained within 10 days. In the low latitudes, the subearth 
points of the satellite a t  the measurement times form a grid on the Earth of 1 degree lati- 
tude by 1-1/2 degrees longitude. All simulations rely on this assumption concerning the 
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Figure 2. Gradiometer output perturbation attributable to  
0.01 -mm/s2 (1 mgal) perturbation of 5degree gravity anomaly. 

data distribution. The dynamical aspect of the problem is therefore eliminated, and the 
aliasing effect of orbit-determination errors are not included in the results. This shortcoming 
is not serious. A Jet  Propulsion Laboratories (JPL) study (Reference 8) indicates that, 
for an instrument with an accuracy of 0.1 etvos unit, orbital accuracies of 20 to 25 meters 
are adequate. Satellite-to-satellite tracking of Gravsat from a high relay satellite should 
yield orbit-determination accuracies well within this range (References 2 and 9). 

.As mentioned in the introduction, the reason for using gravity anomalies to describe geo- 
potential fine structure is the possibility of successfully estimating local blocks of gravity 
anomalies in local blocks of gradiometer data. To investigate this possibility, attention 
is focused on the estimation accuracy of a single gravity anomaly as a function of the 
number of adjacent gravity anomalies which are simultaneously adjusted and the quantity 
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of data which is used in the estimation. The estimation block is defined as a block of 
gravity anomalies centered at  the gravity anomaly in question and square in the sense that 
the block subtends the same number of degrees longitude as latitude. All the gravity 
anomalies in the estimation block are assumed to be simultaneously adjusted in a given 
estimation procedure. As defined, estimation blocks can be incremented only by integral 
numbers of twice the gravity-anomaly block size. For 3-degree gravity anomalies, for 
instance, possible estimation block sizes are 3 ,  9, 15, 21 degrees, etc. 

The data block is defined as a gradiometer data set which was obtained when the sub-Earth 
points of the satellite were within a square region of the Earth’s surface centered at. the 
gravity anomaly in question. For a given estimation-block size, the accuracy of a gravity 
anomaly estimate is not necessarily a monotone function of the data-block size. At  first, 
this may be puzzling because better estimates are generally expected from increased data. 
An explanation can be obtained by noting that for a given estimation block the covariance 
matrix of the set of estimated gravity anomalies is given by equation 15 as the sum of a 
matrix which is dependent only on data uncertainty and a matrix which represents the 
aliasing effects from the unadjusted parameters. With increasing data blocks, the elements 
of the first matrix must decrease, but the elements of the matrix which conveys the alias- 
ing effects will generally increase. This effect can be shown graphically by means of so- 
called aliasing maps. T o  obtain the aliasing maps of figures 3 and 4, in a covariance mode 
a situation was simulated in which the geopotential fine structure was described by means 
of 3- by 3-degree gravity anomalies and Gravsat-gradiometer data with an accuracy of 
0.1 etvos unit was assumed. In figure 3, the RSS contribution was mapped in mgals t o  the 
uncertainty in the estimate of the gravity anomaly defined on the blank grid element in 
the middle of the graph when the adjacent gravity anomalies were assumed to be in an 
unadjusted mode and to have an a priari uncertainty of 0.50 mm/s’ (50 mgal). The data 
block represented by the shaded area of the graph was 10 degrees o n  a side. The satellite 
altitude was 250 km. Note that the aliasing contributions decrease with the distance between 
an unadjusted parameter and the estimated parameter, thus demonstrating the inherent 
orthogonality properties of gravity anomalies in gradiometer data. In figure 4,  the data- 
block size has been increased to  20 degrees, and the aliasing effect of adjacent unadjusted 
gravity anomalies is greater. 

The choice of an intelligent data-reduction strategy is obviously dependent on a knowl- 
edge of the relationship between estimation accuracy and the choice of data-block size 
and estimation-block size. A computer program was written which computes the right 
side of equation 15 for any given data-reduction technique. The program was used to 
investigate data-reduction strategies. First, an altitude for Gravsat was chosen and a gradi- 
ometer data block centered o n  a chosen gravity anomaly was assumed. The data accuracy 
was assumed to be 0.1 etvos unit. A normal matrix for 400 gravity anomalies was formed. 
The chosen gravity anomaly and gravity anomalies in successive layers surrounding the 
chosen gravity anomaly were assumed to be in an adjusted mode, and the rest were placed 
in an unadjusted mode with uncertainties about zero of  0.50 mm/s2 (50 mgal). The right 
side of equation 15 was computed, and the resultant standard deviation in the estimate of 

11 



~ 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

D 

D 

3 

3 

3 

3 

3 

~ 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

3 

3 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

3 

D 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

a 

0 

0 

0 

0 

0 

0 

0 

0 

0 

2 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

2 

2 

18 

2 

2 

0 

0 

0 

0 

0 

0 

0 

- 
- 

0 

0 

0 

0 

0 

0 

0 

0 

4 

4 
- 

4 
-- 
5 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

3 

2 

18 

2 

2 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

3 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

D 

D 

3 

3 

3 

I 

I 

I 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

D 

0 

D 

D 

3 

1 

3 

10" DATA BLOCK 
250 KM SATELLITE HEIGHT 

Figure 3. Alias map for 3degree gravity anomalies. 

the chosen gravity anomaly was recorded. The estimation-block size was incremented by 
removing another layer of gravity anomalies from the unadjusted to  the adjusted mode and 
repeating the process. Figures 5 and 6 show the relationship between estimates of 3- and 
5-degree gravity anomalies and the choices of data-block size and estimation-block size when 
Gravsat is at  an altitude of 250 km. Figures 7 and 8 show the same information when 
Gravsat is at  350 km. The graphs show that an intelligent compromise between computa- 
tional load and accuracy is achieved when a data-block size of 15 degrees is used and the 
buffer zone of rejected gravity-anomaly estimates is at least three layers deep. The graphs 
show that when this strategy is followed and when the satellite is in a 250-km orbit, 3- and 
5-degree gravity anomalies can be estimated with uncertainties of 0.03 and 0.0 1 mm/s2 (3 and 
1 mgal), respectively. When the satellite is in a 350-km orbit, 3- and 5degree gravity anomalies 
can be estimated with uncertainties of approximately 0.07 and 0.025 mm/s2 (7 and 2.5 mgal), 
respectively. 

These results are dependent on the chosen value for the accuracy of the rotating gradiom- 
eter. Because this choice is somewhat arbitrary, i t  is useful to  parametrically represent 
gravity-anomaly-estimation accuracy as a function of gradiometer accuracy. Equation 19 
implies that, for a given choice of estimation-block size and data-block size, the standard 
deviation of a gravity-anomaly estimate is the root sum square of a term which represents 
the aliasing effects of unadjusted gravity anomalies and a term which is proportional t o  
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Figure  4. A l ias  m a p  for 3 d e g r e e  grav i ty  anomalies. 

DATA BLOCK 
KM SATELLITE HEIGHT 

the standard deviation of the rotating gradiometer observation. Assuming a 15-degree data- 
block size and assuming that a given gravity anomaly is simultaneously estimated with all 
gravity anomalies in the three adjacent layers, the estimation accuracies for 3- and 5degree 
gravity anomalies at  satellite altitudes of 250 and 350 kin are given as a function of data 
accuracies as 

u ( 3 " .  2 5 0 k m )  = (675  o2  + 2.75)"' 

u ( 5 " ,  7 5 0 k m )  = (81 u 2  + 0 . 3  lo)-')" 

u ( 3 " ,  3 5 0 k m )  = (4200 u2 + 3.34)" 

u (5", 3 5 0 k m )  = ( 6 9 5  u 2  + 0.01)" 

Standard deviations on the left side of equation 27 are in mgal and the data standard devia- 
tion D on the right side of equation 27 is in etvos units. 
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ASSUMPTIONS 

A PRIORI ESTIMATES OF FREE 
AIR GRAVITY ANOMALIES 
' 5 0  MILLIGALS 
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I 

Accuracy of 3- by 3degree mean free-air gravity anomaly estimate versus data. 
block size for various estimation-block sizes. 
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Figure 6. Accuracy of 5- by 5degree mean free-air gravity anomaly estimated versus data- 
block size for various estimation-block sizes. 
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Figure 7. Accuracy of 3- by 3degree mean free-air gravity anomaly estimate versus data- 
block size for various estimation-block sizes. 
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CONCLUDING REMARKS 

If a rotating gradiometer were flown on a satellite in a polar, circular orbit with an altitude 
of 250 to  350 km, a dense and globally distributed set of gradiometer observations would 
be obtained in about 10 days. From this data set, i t  should be possible t o  determine a global 
set of gravity anomalies. However, t o  keep the computational load within reasonable bounds, 
i t  will be necessary to  estimate local blocks of gravity anomalies in local blocks of gradiom- 
eter data. The results of this study indicate that good gravity-anomaly estimates can be 
obtained from gradiometer data blocks as small as 15 by 15 degrees if each gravity anomaly 
whose estimate is to  be accepted is separated from unadjusted gravity anomalies by three 
layers of adjusted gravity anomalies. If the satellite is flown at an altitude of 250 km and 
if the instrument has an accuracy of 0.1 etvos unit, this estimation strategy yields estimates 
of 3- and 5degree gravity anomalies accurate to within 0.03 and 0.01 mm/s2 ( 3  and 1 mgal), 
respectively. When the satellite is flown at  an altitude of 350 km,  the accuracies of 3- and 
5-degree gravity-anomaly estimates are 0.07 and 0.025 mm/s2 (7 and 2.5 mgal), respectively. 
Intermediate results can be expected at intermediate altitudes. Equation 27 of this document 
permits a scaling of these results to a data accuracy level different from 0.1 etvos unit. 

Goddard Space Flight Center 
National Aeronautics and Space Administration 

Greenbelt, Maryland June 7 ,  1976 
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